Integrated Nano-Biomechanics for Cellular Scale Phenomena in Blood Flow

Takami Yamaguchi MD PhD
School of Biomedical Engineering
Tohoku University

Computational biomechanics

Computational biomechanics on cardiovascular system

Cellular mechanics of RBCs

Passage time significantly increases by high viscosity ratio

Omori et al, Phys Rev Lett (2012) Omori et al, Phys Rev E (2014)

Interaction between thrombus and RBCs

RBCs are highly deformed by thrombus

Kamada, Imai et al, Med Eng Phys (2012) Kamada, Imai et al, Microvasc Res (2013)

RBCs infected by malaria (pf-RBCs)

Kondo, Imai et al, Ann Biomed Eng (2009) Imai, Kondo et al, J Biomech (2010)

Margination of Leukocyte and CTC

RBC passing is required for margination

Microfluidic device for CTC separation using inertial migration

Visualization of cellular flow

Confocal micro-PIV system

Large-scale numerical simulation

Lima, Ishikawa et al, Ann Biomed Eng (2009) Alizadehrad, Imai et al, J Biomech, (2012)

Computational biomechanics on respiratory system

3D molecular structure of respiratory cilia

Cryo electron tomography

Ueno, Ishikawa et al, Nanomedicine (2012)

Flow field generated by ciliary motion

Patient-specific model of pulmonary airflow

Miki, Imai et al, Int J Numer Meth Biomed Eng (2011) Miki, Wang et al, Comput Meth Biomech Biomed Eng (2012)

Effect of breath holding on aerosol deposition

5µm particles

Deposition increases more than 5 times

Computational biomechanics on digestive system

Collective swimming of bacteria

Collective swimming is efficient in terms of energy

Giacche, Ishikawa, J Theor Biol (2010) Giacche, Ishikawa et al, Phys Rev E (2010) Ishikawa, Yoshida et al, Phys Rev Lett (2011) Kanehl and Ishikawa, Phys Rev E (2014)

Biochip for bacteria separation

Highly motile cells go to right chamber

Ishikawa et al, Lab on a Chip (2013)

Swallowing

VF image-based numerical simulation

Gastric mixing

Antral recirculation mixes food in the stomach

Computational biomechanics on microorganism suspension

Dancing volvox

Two volvox "waltz" or "minuet" near a solid surface

Microorganism suspension

Cell-cell interactions generate coherent structure

Ishikawa, Pedley et al, Phys Rev Lett (2008) Ishikawa, Locsei et al, J Fluid Mech (2008) Ishikawa, Yamaguchi, Phys Rev E (2008) Ishikawa, Locsei et al, Phys Rev E (2010)

Cell entrapment at air-liquid interface

Ciliates Tetrahymena are entrapped at the air-water interface

Computational biomechanics with GPU computing

GPU computing

Graphics Processing Unit:

- High performance
- Wide memory bandwidth

GPU Cluster

Multi-GPU computing of pulmonary airflow

Multi-GPU computing of pulmonary airflow

20-30 Gflops/GPU

Miki, Wang et al, Comput Meth Biomech Biomed Eng (2012)

Multi-GPU computing of capsule suspension

Multi-GPU computing of capsule suspension

500 times faster than CPUs

Matsunaga, Imai et al, J Biomech Sci Eng (2014)

Multi-GPU computing of capsule suspension

Perfect weak scaling

Computational biomechanics

